Quality Assessment Report

1 **Technical features - station and instruments**

Site name:	Dedougou, Burkina Faso
Latitude, longitude [°]:	12.466200, -3.472940
Altitude [m a. s. l.]:	305
Location on a map:	https://apps.solargis.com/prospect
Туре:	Ground measurements
Source:	World Bank
URL:	https://energydata.info/dataset/burkina-faso-solar-radiation-measurement-data
Attribution:	Data obtained from the "World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Burkina Faso-Solar Radiation Measurement Data
Time step:	1 minute
Quality assessment status:	T, R, M I, P,

Fig. 1: Data availability for individual parameters

Tab. 1: Instruments installed at the station

Name	Туре	Description	Class	Manufacturer	Model	Units	Uncertainty
GHI	GHI	Pyranometer	Class A	Kipp & Zonen	CMP10	W/m²	< ± 2.0 % (daily)
DNI	DNI	Pyrheliometer	Class A	Kipp & Zonen	CHP 1	W/m²	N/A
DIF	DIF	Pyranometer	Class A	Kipp & Zonen	CMP10	W/m²	< ± 2.0 % (daily)

Tab. 2: Test groups

Test group	GHI	DNI	DIF	GTI	RHI	ALB
Group_1	GHI	DNI	DIF	-	-	-

Multi-component tests are applied only for test groups with GHI, DNI, DIF or GTI columns.

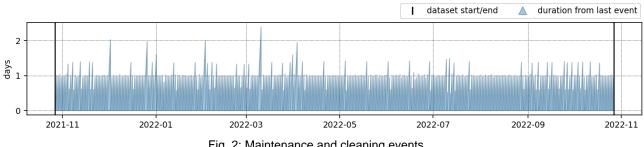


Fig. 2: Maintenance and cleaning events

2 Results of quality assessment

Prior to the comparison with satellite-based solar resource data, the ground-measured irradiance was quality-assessed by Solargis. Quality assessment (QA) is based on BSRN methods and methods implemented in-house by Solargis. The tests are applied in two runs: (i) first, the automatic tests are run to identify the obvious issues; next (ii) by the visual inspection we identify and flag inconsistencies, which are of more complex nature. Visual inspection is an iterative and time-consuming process.

The automatic QA tests may include:

- Correction of time shifts
- Identification of missing values
- Evaluation of measurements against sun position (Sun below and above horizon)
- · Comparing the data with possible minimum and maximum physical limits
- Multi-component tests i.e. evaluation of consistency between solar radiation components (GHI, DNI and DIF) or relevant couples (GHI, RHI, DIF or GTI)
- Detection of outliers and patterns (TEMP)
- Tracker malfunction (DNI and DIF)

Automatic quality assessment can be applied on solar and meteorological data. The data readings not passing one or more QA tests were flagged.

Tab. 3: Availability of data readings for Dedougou station

	Data availability						
Sun below horizon	260 150	49.5%					
Sun above horizon	265 449	50.5%					
Total data readings	525 599	100.0%					

Tab. 4: Summary of quality assessment results

Type of test		Occurr	rence of data read	ings (Sun above h	orizon)		
Type of test	Gł	-11	D	NI	DIF		
invalid values	5	0.0%	1 548	0.6%	1 573	0.6%	
sun below horizon	0	0.0%	0	0.0%	0	0.0%	
below minimum physical limit	3 301	1.2%	102	0.0%	3 477	1.3%	
consecutive static value	16	0.0%	1 821	0.7%	0	0.0%	
consistency issue	2 182	0.8%	2 182	0.8%	2 182	0.8%	
shading	41 782	15.7%	44 105	16.6%	0	0.0%	
maintenance	292	0.1%	290	0.1%	283	0.1%	
post filtering	553	0.2%	665	0.3%	1 123	0.4%	
Total excluded data readings	48 131	18.1%	50 713	19.1%	8 638	3.3%	
Passed data readings	217 318	81.9%	214 736	80.9%	256 811	96.7%	
Total data readings	265 449	100.0%	265 449	100.0%	265 449	100.0%	

sun below horizon

below physical minimum

consecutive static values

consistency

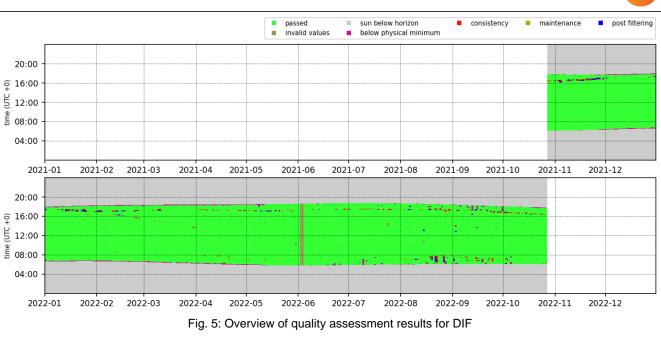
.

shading

maintenance

.

post filtering


passed

invalid values

2

Fig. 4: Overview of quality assessment results for DNI

Quality Assessment Report: Dedougou

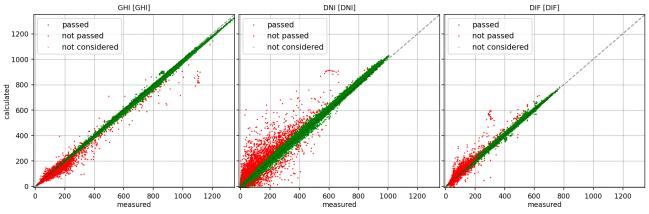


Fig. 6: Consistency plot of test group Group_1

Quality Assessment Report: Dedougou

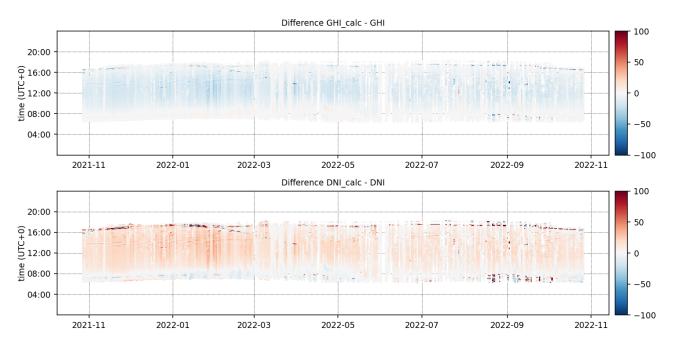


Fig. 7: Difference plot of test group Group_1

Tab. 5: Quality Control summary

Indicator		Quality	Note						
Instrument accuracy				2x Class A instrument (CHP 1, CMP10)					
Information on clear	ing and maintenance		Cleaning log provided, cleaning was regular						
Quality control comp	lexity		Ма	Majority of quality control tests applied. Multi-component tests applied.					
Availability of valid n		Approx. 12 months of DIF, DNI and GHI after quality control							
Not specified	Very good	Good		Medium	Problematic	Insufficient			

Quality assessment summary

Data is measured with high accuracy pyranometers and pyrheliometer with daily cleaning.

Issues identified in the data include terrain shading during early morning and late afternoon and shading caused by structure and occasional inconsistency between GHI, DNI and DIF. Only passed data records qualifies for model validation.

3 Comparison with model data

The validation statistics were calculated from valid records after quality control and sun elevation higher than 5°. Dataset 2018331_Solargis_TS_WorldBank_Dedougou_BurkinaFaso_2021-2022 was used as model dataset for compare statistics.

Tab. 6: Global comparison of hourly values

	Bia	IS	Root Me	Root Mean Square Deviation, RMSD					
	[W/m²]	[%]	Hourly [%]	Daily [%]	Monthly [%]	of data pairs			
GHI	5	0.8	10.2	5.5	2.0	3568			
DNI	-14	-3.2	31.2	25.0	12.6	3538			

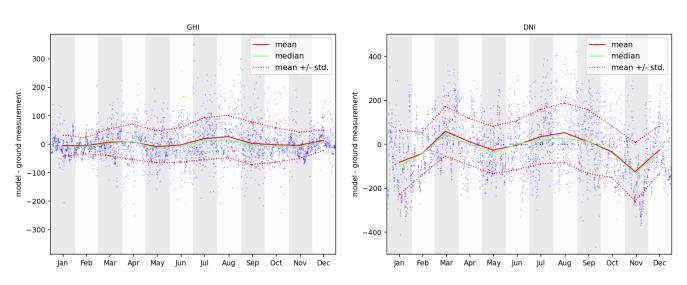


Fig. 8: Deviations of hourly DNI and GHI - Dedougou X-axis: day of year DOY; Y-axis: difference between model and measurements

Tab. 7: Monthly comparison of hourly values - number of data pairs

Number of points	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GHI	310	272	309	285	310	300	310	298	288	293	283	310
DNI	310	272	308	283	309	280	308	298	285	293	282	310

Tab. 8: Monthly comparison of hourly values - bias

BIAS [%]	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GHI	-0.8	-0.8	1.3	1.4	-1.4	-0.5	3.7	5.0	0.6	-0.3	-0.6	2.6
DNI	-13.3	-8.1	22.7	3.4	-7.5	-1.5	10.9	16.0	3.5	-7.2	-19.1	-4.8

Quality Assessment Report: Dedougou

Tab. 9: Monthly comparison of hourly values - RMSD

RMSD [%]	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GHI	6.4	4.5	8.4	10.4	9.8	11.4	14.5	14.7	13.2	9.9	7.7	7.2
DNI	27.2	20.2	49.0	28.3	31.5	35.5	41.0	44.0	39.9	26.1	27.9	20.5

Acronyms

Parameter types

DIF	Diffuse horizontal irradiance
DNI	Direct normal irradiance
GHI	Global horizontal irradiance

Quality control statuses

T / T	Time reference check (missing / done)
R / R	Radiation automatic quality check (missing / done)
M / M	Meteo automatic quality check (missing / done)
[+/[]	Manual quality check (missing / done)
P/ P	Post filtering check (missing / done)

BIAS

Represents systematic deviation between modelled and measured values (positive bias indicates overestimation and negative bias shows underestimation of the model) and is calculated according to this formula:

Bias = measured - modeled

Bias indicates systematic (annual or seasonal) issues of a solar or meteorological model. It can also indicate systematic problem in measurements.

In solar radiation model, this can be determined by insufficient cloud identification, coarse resolution and regional imperfections of atmospheric data (aerosols, water vapour), terrain, sun position, satellite viewing angle, microclimate effects, high mountains, etc.

Bias may also indicate a quality issue of the measured data, e.g. misalignment, miscalibration or soiling of a sensor.

In solar radiation model, this can be determined by insufficient cloud identification, coarse resolution and regional imperfections of atmospheric data (aerosols, water vapour), terrain, sun position, satellite viewing angle, microclimate effects, high mountains, etc.

Bias may also indicate a quality issue of the measured data, e.g. misalignment, miscalibration or soiling of a sensor.

Root Mean Square Deviation (RMSD)

Represents spread of deviations given by random discrepancies between measured and modelled data and is calculated according to this formula:

$$RMSD = \sqrt{\frac{\sum_{k=1}^{n} (X^{k}_{measured} - X^{k}_{modeled})^{2}}{n}}$$

Considering solar radiation or meteorological model, RMSD reflects inaccuracies of cloud identification (e.g. intermediate clouds), under/over estimation of atmospheric input, data, terrain, microclimate and other effects, which are not captured by the model. Par of this discrepancy is natural - as satellite monitors large area, while the sensor can see only micro area of approx. 1 squared centimeter.

Higher RMSD may also indicate lower quality of the measured data, e.g. lower accuracy, miscalibration or misalignment of the instruments, by soiling of sensor due to insufficient cleaning or issues in a data logger. It can also indicate insufficient data quality control.

Legal information

The use of Solargis Analyst including this report is subject to compliance with the license terms and conditions agreed upon the purchase of Solargis Analyst and accessible within the customer's account.

Upon any use of Analyst, including the use of this report you should always refer to the source: "Solargis Analyst 1.4.6b15 © Solargis" as part of the final work, publication or similar.

Attribution of sources other than Solargis are visible on the first page of this report.

For any questions or further details please contact legal@solargis.com.

© 2024 Solargis, all rights reserved